244 research outputs found

    Arrow of time across five centuries of classical music

    Get PDF
    The concept of time series irreversibility—the degree by which the statistics of signals are not invariant under time reversal—naturally appears in nonequilibrium physics in stationary systems which operate away from equilibrium and produce entropy. This concept has not been explored to date in the realm of musical scores as these are typically short sequences whose time reversibility estimation could suffer from strong finite size effects which preclude interpretability. Here we show that the so-called horizontal visibility graph method—which recently was shown to quantify such statistical property even in nonstationary signals—is a method that can estimate time reversibility of short symbolic sequences, thus unlocking the possibility of exploring such properties in the context of musical compositions. Accordingly, we analyze over 8000 musical pieces ranging from the Renaissance to the early Modern period and show that, indeed, most of them display clear signatures of time irreversibility. Since by construction stochastic processes with a linear correlation structure (such as 1 / f noise) are time reversible, we conclude that musical compositions have a considerably richer structure, that goes beyond the traditional properties retrieved by the power spectrum or similar approaches. We also show that musical compositions display strong signs of nonlinear correlations, that nonlinearity is correlated to irreversibility, and that these are also related to asymmetries in the abundance of musical intervals, which we associate to the narrative underpinning a musical composition. These findings provide tools for the study of musical periods and composers, as well as criteria related to music appreciation and cognition

    Modular analysis of the control of flagellar Ca2+-spike trains produced by CatSper and CaV channels in sea urchin sperm

    Get PDF
    Intracellular calcium ([Ca2+]i) is a basic and ubiquitous cellular signal controlling a wide variety of biological processes. A remarkable example is the steering of sea urchin spermatozoa towards the conspecific egg by a spatially and temporally orchestrated series of [Ca2+]i spikes. Although this process has been an experimental paradigm for reproduction and sperm chemotaxis studies, the composition and regulation of the signalling network underlying the cytosolic calcium fluctuations are hitherto not fully understood. Here, we used a differential equations model of the signalling network to assess which set of channels can explain the characteristic envelope and temporal organisation of the [Ca2+]i-spike trains. The signalling network comprises an initial membrane hyperpolarisation produced by an Upstream module triggered by the egg-released chemoattractant peptide, via receptor activation, cGMP synthesis and decay. Followed by downstream modules leading to intraflagellar pH (pHi), voltage and [Ca2+]i fluctuations. The Upstream module outputs were fitted to kinetic data on cGMP activity and early membrane potential changes measured in bulk cell populations. Two candidate modules featuring voltage-dependent Ca2+-channels link these outputs to the downstream dynamics and can independently explain the typical decaying envelope and the progressive spacing of the spikes. In the first module, [Ca2+]i-spike trains require the concerted action of a classical CaV-like channel and a potassium channel, BK (Slo1), whereas the second module relies on pHi-dependent CatSper dynamics articulated with voltage-dependent neutral sodium-proton exchanger (NHE). We analysed the dynamics of these two modules alone and in mixed scenarios. We show that the [Ca2+]i dynamics observed experimentally after sustained alkalinisation can be reproduced by a model featuring the CatSper and NHE module but not by those including the pH-independent CaV and BK module or proportionate mixed scenarios. We conclude in favour of the module containing CatSper and NHE and highlight experimentally testable predictions that would corroborate this conclusion

    Self-determination theory in HCI: shaping a research agenda

    Get PDF
    Self-determination theory (SDT) has become one of the most frequently used and well-validated theories used in HCI research, modelling the relation of basic psychological needs, intrinsic motivation, positive experience and wellbeing. This makes it a prime candidate for a ‘motor theme’ driving more integrated, systematic, theory-guided research. However, its use in HCI has remained superficial and disjointed across various application domains like games, health and wellbeing, or learning. This workshop therefore convenes researchers across HCI to co-create a research agenda on how SDT-informed HCI research can maximise its progress in the coming years

    Extension and reconstruction theorems for the Urysohn universal metric space

    Get PDF
    We prove some extension theorems involving uniformly continuous maps of the universal Urysohn space. We also prove reconstruction theorems for certain groups of autohomeomorphisms of this space and of its open subsets.Comment: Final and shortened version, 25 pages, to appear in Czechoslovak Math.
    corecore